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SUMMARY

It has been found that two instruments will yield different numeri-

cal values when used to measure identical points. A statistical approach

is presented that can be used to approximate the error associated with

the calibration of instruments. Included are standard statistical tests

that can be used to determine if a number of successive calibrations of

the same instrument can be considered to be the same curve, or if they are

different. Essentially, these tests involve the determination of regres-

sion lines that have both a common slope and common intercept. The

example was designed to monitor the deformation of mountain slopes. The

statistical approach is general (standard), however, and does not depend

upon the specific type or function of instrument being calibrated.
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errors of the dependent variables YF and YL, respectively;

variances of the EF and EL’ respectively;

angle set in the laboratory in 1972, in degrees.
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INTRODUCTION- - - -

A problem that faces researchers and engineers who collect laboratory

or field measurements is the calibration and subsequent stability of their

instruments in relation to changes in time, temperature, pressure, or other

external factors. These changes may cause the instrument readings to drift

from the manufacturer's calibration. It is often necessary to recalibrate

the instrument or use "secondary standards" to determine if the instrument

is functioning properly.

A statistical approach has been developed to determine if new cali-

bration lines are necessary for accurate use of the instrument. The

example to be given outlines calibration of a borehole inclinometer de-

signed to monitor the deformation of mountain slopes. The same statistical

approach can be used with other instruments such as the neutron soil mois-

ture probe, solar radiometer, suspended sediment sampler, or the precipi-

tation gauge.
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DESCRIPTION OF THE PROBLEM_-

Within a ten-year period, the Forest Service has studied the effects

of land-management practices on acceleration of the rate of natural soil

creep. The term soil creep refers to the slow, downslope movement of soil

and rock materials. In mountainous regions of the Pacific Coast, natural

soil creep processes play a major role in soil movement by directly con-

tributing to sediment in streams, and indirectly contributing to land-

slides through progressive slope failure.

In 1964, the installation of a borehole access casings network was

undertaken to study the character of natural soil creep. By 1966, approxi-

mately 150 access casings had been installed at 17 sites, representing a

1wide range of soil and vegetation types in northwestern California . The

casings were periodically surveyed with a modified strain-gauge incli-

nometer as described by Kallstenius and Bergau2. Strain readings were

made with a Balduin-Lima-Hamilton Model 120  strain indicator. The incli-

nometer is essentially a precise pendulum connected to a high-resolution

strain gauge. The instrument is rotated in the borehole casing until the

maximum strain reading is obtained. At this point, the orientation of

the instrument is recorded in terms of strain reading and azimuth.

The access casings were installed in the field by drilling 8.9 cm

boreholes, at least 1 m into bedrock whenever possible, to obtain a

stable foundation. A 6.0 cm OD polyvinylchloride (PVC) tube was pressed
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into each borehole, then the entire site was allowed to stabilize for one

winter before the initial inclinometer readings were taken.

Four measurements of orientation and inclination of the inclinometer

in the casing were taken at 0.5 m depth increments from the soil surface

to the bottom of the hole, and then repeated from the bottom to the sur-

face. The eight pairs of readings at each measurement point were averaged

to obtain the best estimate of strain and azimuth for that depth. These

data were further reduced by computer to yield a projection of the casing

on the plane of maximum displacement, and also on the horizontal plane by

means of a polar projection. Comparison of the casing configuration

between successive surveys reveals the direction and amount of movement

of the casing with increasing depth in the soil profile.

By 1972,the accumulated data spanned eight years and revealed that

the "movement" patterns of the borehole casings were extremely erratic.

The movement of the borehole casing was found to be uniformly greater in

the period from the initial survey to the second survey than the movement

found in successive surveys. In addition, the direction of movement was

neither progressive nor consistent.

Casings installed in boreholes about 1 m from each other showed

markedly different patterns of movement, which could have been the result

of three factors operating independently or in combination:

1. The method of installing the borehole casing was found to be a

major cause of the problem. The initial assumption that the sides of the

borehole would collapse within one year, resulting in an intimate contact

of the casing with the surrounding soil materials, was found to be in



error. Alignment corrections in the borehole were still occurring eight

years after installation3.

2. The instrument error could have exceeded the measured rate of

soil creep, and the indicated movement could be a reflection of random

instrument error as well as the operator's ability to null the instrument.

By using Monte Carlo techniques, the precision of the instrument for field

measurements was found to be equivalent to about 2 mm of displacement for

an 8 m deep borehole casing. Thus, the error of calculating displaced

area is approximately 0.01 m2 in soil 8 m deep3.

3 l The calibration of the instrument could reflect an inadequate

expression of the instrument response, which would require a new calibra-

tion. The statistical calibration procedure, described in the following

section, provides a satisfactory solution to this problem.



CALIBRATION PROCEDURE

LABORATORY CALIBRATION

During the course of the eight-year study, the inclinometer and

strain indicator were periodically returned to the factory for adjustment

and repair. Each spring, before the field measurement season, the instru-

ment was calibrated in the laboratory by the following method: (a) the

instrument was situated at "known" angles from the vertical; (b) using a

high-precision granite plate, a sine plate, and gauge blocks, strain

gauge readings associated with the angle were obtained; (c) a calibration

curve of the strain gauge readings on the angle was then obtained by a

"least-squares fit" to the data.

In the course of this investigation, it became evident that there

were several serious errors in the laboratory calibration procedure. Al-

though the angles set in the laboratory calibration covered a wide range,

the angles of inclination of the hole casings encountered in actual field

measurements were small, usually about 0.01 degrees. Therefore, almost

all of the laboratory calibration data were collected at angles greater

than the angles of interest.

In addition, under the incorrect assumption that a 0o angle would

yield a 0o strain reading, no laboratory measurement was made at the

vertical angle of 0o. This procedure may be correct in theory; in prac-

tice, however, a 0o angle is almost never found, because of the alignment
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of the strain gauge in the instrument and the practical

placing the instrument in a precise vertical position.

simply place the sine plate at precise angles from the

Therefore, not only does the annual laboratory 

associated with the least-squares fit to the data, but

must be extrapolated beyond the actual data to the rang

field data are found.

This unsatisfactory situation was corrected when t

calibration was made. The procedure was changed so that

laboratory data were collected within the range of angl

the field measurements; however, field data that had be

the seven previous years by equipment without adequate

difficulty of

The gauge blocks

initial set up.

calibration have error

the calibration

e where most of

he 1972 laboratory

 most of the

es encountered i

en collected during

laboratory 

line

the

n

calibra-

tions, remained in the records of previous tests.

FIELD CALIBRATION

One of the criteria established for drilling the borehole was to ex-

tend the hole at least 1 m into bedrock to obtain a stable foundation for

the inclinometer casing. If this was actually accomplished for each access

casing, as is indicated in the drilling log, the inclination of the access

casing at the bottom two measurement positions should remain constant from

year to year.  It then follows that the measured strain gauge readings

would also remain constant for these depths, with two sources of variation:

(a) the random instrument and operator error, previously found to be

equivalent to an average displacement of about 2 mm; (b) the shift in

instrument calibration from survey to survey. For each survey, then, the

strain gauge measurement for a given angle would either be the same or

8



would have a consistent shift relative to previous surveys, with variation

due to the random instrument and operator error.

Significant variation in strain measurement from survey to survey

for a given access casing (outside of those expected to be associated with

the random error and the calibration shift) would lead one to conclude

that the bottom of the access casing was not established in stable bedrock.

In checking the data, several of the access casings produced readings that

were consistently and obviously deviant (>5~r) from the readings obtained

from the other casings. These deviant casings were rejected from further

analysis.

The ultimate objective is to estimate the vertical angle of the bore-

hole casing at each measurement point for each year in which measurements

were made; however, the only year for which an adequate laboratory cali-

bration exists is 1972. Thus, there is a problem in determining a rela-

tionship between the field strain measurements made in 1972 and those

made at the same stable field locations in previous years.

The 1972 field strain data can be used as a "bridge", since they are

related both to angle (through the 1972 laboratory calibration) and to the

field strain gauge measurements made in previous years. The first step is

to calculate regression lines relating the 1972 field strain gauge data to

the strain data collected in the surveys of 1965, 1966, 1968, and 1970.

The next step is to establish if the relationship has remained constant

with time--that is, if the five separate regression lines have a common

slope and intercept. If this can not be established, the instrument



calibration has then shifted and a different calibration formula is re-

quired for each year. The third step is to estimate the relatiohship

between the strain gauge measurement and the angle precisely set in the

1972 laboratory tests. The two analyses are then combined to estimate the

angle of the borehole casing from the field strain gauge measurements,

and give confidence intervals for these angles.

1 0



REGRESSION ANALYSIS OF FIELD DATA

There are a number of preliminary questions to be answered before it

can be determined whether the five regression lines of field strain

measurement made in 1972 (Y) for each of the five previous years (X) may

be regarded as the same line.

1. Why fit regression lines? In a strict sense, it is not correct

to regard the strain measured in 1965, for instance, as being an independ-

ent variable (X) measured without error, and the 1972 strain (Y) as the

dependent variable with an error term attached. In fact, the theoreti-

cally correct approach (Kendall and Stuart4,5) supposes a structural

relationship between X and Y. Such an approach is not necessary in prac-

tice for this case, because the fit to a straight line is good, as indi-

cated by the high R2 values (Table 1). This is fortunate, since the

theoretical developments for the structural case would be much more diffi-

cult than for the regression case.

2. The range in X varies from year to year; also, not all of the

plots were measured in each of the five years. Given the conditions, is

it justifiable to assume that the regression line can validly be extrapo-

lated beyond the range of the data for those years where the range of X

is rather short? In general, the answer is that extrapolations cannot be

justifiably made because they can lead to dangerously misleading conclu-

sions. In this study, however, the ranges of X for five years of data
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vary by no more than a factor of 2, and a careful examination of the

scatter of points on the X  and Y  plots for each year give no indication of

departure from a straight line. Therefore, in this case, a limited ex-

trapolation is justified.

TABLE 1-- Summary of regression statistics for the five calibration lines.
?

Number of
points Error Regression Slope

Year = n Mean Sq. Sum sq. b P2

1965 18 163.75 671,195 1.296 0.99611

1966 21 81.84 4,738,688 1.004 0.99967

1967 56 407.35 164,110,312 0.961 0.99866

1968 15 49.53 2,248,886 1.025 0.99971

1970 39 139.13 10,647,179 0.998 0.99952

S -xx summed over the years 1966 through 1970 is 35,307,342.

%Y - summed over the years 1966 through 1970 is 34,662,401.

S - summed over theyy years 1966 through 1970 is 34,075,193.

3. Are simple linear regressions adequate, or should quadratic or

cubic regressions be fitted to the data? The data for each of the five

years were analyzed, using combinatorial screening for multivariate re-

gression6. Tests were made of X, X2, X3, and X4 alone and in combina-

tion, This analysis confirmed that the higher order transformations did

not significantly add predictive power to the linear fit.

4. Is the error variance the same for each regression line? The

standard analysis of regression assumes this property of homoscedasticity.
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 It is known, however, that the analysis is relatively insensitive to small

departures from the assumption. In Table 1, the five error mean squares

show the variances to be roughly comparable --although the one for 1967

looks suspiciously large.

The equality of variance can be determined by Bartlett's test7, in

which the quantity

I

k

I

-1
2 log x l+ 1 C l - l . . . . . . l . . . . (1)

3(k-1) i=l n. Cn.
2 2

will have the x2 distribution with (k-1) d.f., if the population variances
A2

are indeed equal. Here, if 0*
0th

2
is the error mean square in the z year,

based on r~. data points o/I is the polled estimate of variance based on k

different G2/I* , then h is calculated from

A2

(0i
(ni_1)/2

1

Using the compiled data from all five years, a X of 32.14 is obtained

which is highly significant as x2 with 4 d.f. It is easily shown that the

variance for 1967 is significantly larger than the combined variance for

the other four years. The discrepancy in 1967, however, was probably not

great enough to invalidate the subsequent analysis, so the 1967 data are

retained. However, it must be noted for future reference that the variance

for the 1967 data is anomalous.

A comparison of the five separate regression lines of Y (1972 field

strain gauge measurement) on each X (field strain gauge measurement made
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in a particular year--1965, 1966, 1967, 1968 or 1970) was made. From the

comparison, the following questions were found pertinent:

1. Do the lines have a common slope?

2. If the lines have a common slope, are the parallel lines

actually the same line (i.e., do they have a common intercept)?

3. Do the various lines pass through the origin?

4. Do the lines have a slope of 1?  

The last two questions are of little importance here, and will not be

investigated in detail. However, it is important to realize that they are

not "obviously" true, even though they seem plausible on physical grounds;

indeed, with the present data, the questions would be irrelevant in the

majority of cases. For example, it would be quite wrong not to include a

constant term in our regression model for Y on X.

The theory is outlined as needed here; for a more detailed account

8refer to Williams ..

COMMON SLOPE

Theory

For a particular year, let S be the sum of (X.-z
sc?;r J

fY;-i? over all
tJ

the data points for that year. Similarly, SM_ is the sum of Ixj_XJ2, and

S
YY

is the sum of iYj-?i2.

Then, the total sum of squares for regression is

k
1 (s
1 XY

2Isxx) Y

the sum being taken over all the k years.with k degrees of freedom,

The next requirement is the regression sum of squares when all lines

14



are assumed to have a common slope. It is easiest to imagine that the

means (x, u) for the k sets of data are moved to a common point. The

procedure is then continued as if fitting a single line to all k sets of

points taken together. Thus, the total sum of squares for X is

k
Es
1

xx-

The total sum of products for XY is

k

Lxy'
1

and the total sum of squares for Y is

k
CS .
1 YY

Hence, the regression sum of squares for the k lines with a common slope is

with one degree of freedom.

The difference between the two regression sums of squares is the sum

of squares for departure from parallelism, on (k-l) d.f., and it can be

tested for significance against the pooled estimate of residual sum of

squares from all the lines. The latter is the "combined residual" term in

Table 2.

Analysis

Some summary statistics for the regression analysis are given in

Table 1. It is immediately obvious that the Slope b for 1965 is widely

15



divergent from the others. Obviously, predicting angles from the 1965

field strain gauge readings would require an equation different from those

for the other year. Therefore, data for 1965 are omitted from the analysis

to see whether the other four lines appear to differ. The analysis of

variance for the remaining four lines is shown in Table 2. Clearly, the F

value of 23.1 provides evidence that the four lines do not have a common

slope.

TABLE 2 -- Analysis of variance for common slope test.

I

Item D.F. S.C. MS. F
3

Regression with common slope 1 34,029,328.5

Difference of slopes1 3 16,546.2 5,515.4 23.14
I

Sum of 4 Regression S.S. 4 34,045,784.7
A

Combined residuals2 123 3
, 29,342.9 238.6

.

1 By subtraction

Sum of four separate residual S.S.

(n 1g~~-2)+(n1g67_2)+(~lg~*~~~+~~lg~*-~~ = (2192)+(  5602)+(  1502)+(  39-2)

4 Statistically significant at the 1% level

COMMON INTERCEPT

This case is presented for completeness only, since it has been

already shown that the lines are not parallel and so can hardly be identi-

cal.

Theory

The sum of squares corresponding to the difference in positions of the

regression lines, as opposed to the difference in slopes sum of squares,

16



must be obtained. If differences in years are disregarded, all the data

can be combined, giving a grand total sum of squares on

This can be separated into three components:

1. Combined residual sum of squares, as in Table 2 (123 d.f.).

2. Sum of squares for the four separate slopes of the lines, as in

row 3 of Table 2 (4 d.f.).

3. Sum of squares for difference in positions (intercepts) of the

lines, obtained by subtraction (3 d.f.).

Analysis

The analysis of variance for the four lines is shown in Table 3.

For compatibility with Table 2, the 1965 data have been omitted. It is

seen that the difference in positions is significantly large, having an F

of 64.7. As noted above, however, this is of little interest, once the

question of parallelism has been rejected.

TABLE 3 -- Analysis of variance for common intercept test.

Item D.F. S.S. M.S. F .

Sum of 4 Regression S.S.1      4 34,045,784.7

Difference of intercept
(by subtraction) 3 46,295.6 15,431.9 64.72

Combined residual1 123 29,342.9 238.6

TOTAL S.S. 1 130 34,127,423.2

1 See Table 2.
2 Statistically significant at the 1% level.
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ESTIMATION OF ANGLE

Once the comparability of the field strain gauge data from year to

year is examined and a relationship between the years by regression is

established, the main problem is calibrating the borehole inclinometer so

as to estimate the vertical angle which corresponds to the strain gauge

reading. In the standard calibration procedure for this type of instru-

ment, the angle (8) expressed in degrees is precisely set in the labora-

tory, and the strain (Y ) is measured with the inclinometer and strainL

gauge. Here and subsequently, the subscript L refers to the laboratory

calibration; F refers to the field calibration.

For the 1972 data, the regression line is

YL = -6.66 + 11,714.65 0 . . . . . . . . . . . . . . . l l l (3)

The residual mean square error for the laboratory calibration (a,') is

281.3 with 156 d.f.

The value for oL2 is close to oF2, the combined residual mean square

error of 238.6 obtained from the four regression lines developed from the

field calibration with 123 d.f. (Table 2). There was no reason to expect

this in advance, because oF2 is the residual mean square error for the

1972 field strain gauge measurement, and aL2 is the 1972 laboratory ex-

periment error. Conceivably, the error in reading the instrument might

be the same in each case, but there are, of course, other sources of

variation about a regression line. The implication is that the problem

19



cannot be simplified by assuming that one error variance is negligible

compared to the other.

The standard error of the slope for the laboratory calibration, cal-

culated by the usual formula

is 14.16. The standard error of the intercept, based on a sample of size

nL’ as calculated by

uL/~*._*..* . . . . l *.** . . . . . (4)

is 2.00. Thus, the answer to the question of a line through the origin is

negative.

Theoretically, it is possible to obtain 0 angle results in a strain

reading different from 0, and this would imply that there was some error

associated with the installation of the pendulum in the instrument when

it was fabricated. It must be remembered that the common practice of

assuming that the calibration line passes through the origin is invalid.

Theory

Again let X denote the field strain gauge measurement in some par-

ticular year and let YL be the 1972 laboratory strain gauge measurement,

YF the 1972 field strain gauge measurement, and 8 the vertical angle in

degrees. Thus, the 1972 laboratory strain measurement on angle becomes

yL =cxL+BLe+EL .*..........*..**..*.(5)

20



and the regression of the 1972 field strain gauge measurement (U,) upon

strain in a particular year (X) becomes

and variance oF 2. All of the parameters ~L++&,&L2 and OF2 have

been estimated, the denotation of the first four by aL,bL,aF and bF’

The objective is to estimate the vertical angle (0) from the strain

measurement made in the field (0 . It must be assumed, however, that

yL = yF’ which is a basic assumption of n early every instrument calibra-

tion experiment. That is, the laboratory measurements and the field

measurements are equal, and are subjected to the same errors. We have

already seen that the error variances are similar. Thus, the angle (6)

can be estimated from

A
e

aF -I- bfl - aL=
b

. . . . . l . . . . . . . . l . . l . . . * . (7)
L

Next, the problem of finding confidence intervals must be solved for

the estimated 8. Reviewing the ordinary regression case, where a line is

fitted

Y = a -I- bx . . . . . l * . . . . . * . l . . . . . . . . l (8)

Two cases arise in determing the variability of the prediction at

X = x,.

1. To know the accuracy of the estimate of Y on the regression line

at X = X
0'

the standard formula for the variance of the prediction is

21



[

2

1 (X - n

Var G = 0' - + ' S
n

xx

where CJ' is the residual mean square error of Y.

2. To know the accuracy of the estimate of Y at an additional

2observation will have its own error variance CJ . It is now possible to

calculate tolerance limits for the prediction based on the variance

S
xx

. . . . l . . l . . . . . . .
l (10)

These analogies should clarify the following discussion of the

problem.

(1) Predicting the angle (0) at a known value strain (X ).
0

X can now be regarded as a constant.0 From eq. (7), define

u = aF + b, X0 - aL, thence Var (e^, = Var (f ) . . . . . . .(ll)
L

This quantity can be approximated by the delta method (see, for

example, Kendall and Stuart', Chapter lo), since all of aF, b,, aL, b,

have variances inversely proportional to sample size. Now, approximately,

Var ht) 2 cov (u, b,) I/ar (bL)
. .(12)

E2 (ul - mmbL) + p (b )
L

All these quantities can be estimated; clearly

Elb,) = B, . . . . . . . . . l . . . . . l . . . . . . l (14)

Further,
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Cm fu,bL)  =  - Cov (a&y-) . . . . . . . . . . . . . . . l (16)

Since (a,, bLi is dependent of (a,, b,)

cm h, b,) = + 8 +see l . . . l . c . . . . l . . . * .(17)

Var (u) = Var ia, + bfio)  + Var (a,)  . l l . . . . . . . . . (18)

V a r  (24) = aF2 (+. + cx;--,x)2 )+ aL2 $ . . . . . . . .(19)

A

Hence, confidence intervals for 8 are available (although somewhat

complicated to compute!).

(2) Predicting 0 for an additional measurement X = Xo-

Here X must be assumed to have its own error variance oF2. If the
0

calibrations are based on a fairly large sample of data (a sample size of

20 or more), then the error in XOwill dominate those of the regression

parameters. Put slightly differently, the uncertainty about the addi-

tional observation will far outweigh the uncertainty about the rather

accurately-determined regression lines. In this case, the variation in

ap $3 ap b, can be neglected, and approximately

Var (& = -bF2 OF*  l  ****.*.****e*...*. c (20)
b 2

L

In practical applications, case (2) above seems to be the more commonly

appropriate; it has been used in making the calculations below.

Before the numerical values for 6 and Var 6) are given for the

problem, a further question arises: Is it really necessary to use a
A

different formula for the angle 8 for each year?
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It may be objected that this is wasteful of data, for if there were

not 5, but 500 regression lines, and if it were known that they were not

the same, then none of the information on the first 499 lines could be

used for the five-hundredth line. This may be considered a disadvantage,

but the difficulty is inherent in the particular problem, rather than in

the analysis. If information from previous years is to be used to improve

the prediction for this year, some strong assumptions are necessary about

the fluctuations in the regression lines from year to year. Such an

approach would be possible using Bayesian statistics, where the slopes

(bF) for different years might be regarded as random samples, from some

distribution (perhaps normal). In such a case, the estimate of bF for a

particular year would be a compromise between the estimate based on the

data for that particular year, and the overall mean of the b/s for every

year.

Such an approach has not been adopted here because the assumption

seems unrealistic in this context, and because one can hardly estimate an

underlying distribution from only four values (four years). But from the

point of view of classical--as opposed to Bayesian--statistics, there is

nothing to be said about using previous years' b, values to estimate this

year's,

For the following five years of data given (Table l), the equations

for estimating angle (0) over the range found in the field measurements

from measured strain in a given year (X), and the standard error for the

angle are given in Table 4.
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TABLE 4 -- The standard error for the angle.

1965:

1966:

1967:

1968:

1970:

0 = 0.000046 - 0.000111 x s.e. of 8 = 0.001

8 = 0.000945 + 0.000086 x 0.001

0 = -0.001700 + 0.000082 x 0.002

8 = -0.001380 + 0.000875 X 0.001

8 = 0.000502 + 0.000085 X 0.001
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CONCLUSION

Nearly all instruments commonly used for collection of laboratory or

field data require some type of calibration to relate the instrument energy

output (be it millivolts, ohms, electronic pulses, etc.) to the desired

physical measurement (be it langleys of solar energy, soil moisture or

density, inches of rainfall, height of streamflow, etc.). Once the basic

instrument is calibrated in general terms, a second calibration is neces-

sary for the reading to be useful in the specific case under study.

For example, once a streamflow recorder is calibrated so that a

change in instrument voltage shows the depth of a river, a second calibra-

tion is required to relate river stage to volume of flow, which is based

on the cross sectional area and velocity of the river.

Another example is the neutron soil moisture meter, in which the

instrument is calibrated carefully by collecting repetitive neutron counts

in tanks containing soil of known and uniform moisture content. Because

it is very time-consuming and difficult to prepare tanks of uniform soil,

a secondary calibration procedure is consistently used. In this case,

tanks containing various concentrations of boric acid replace the tanks of

soil. A relationship is then established between count rate in the soil

tanks and the count rate in the boric acid tanks.

Numerous other examples can be found in which rather elaborate and

complicated procedures are used to calibrate instruments. Too often, such
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calibrations are taken at face value. Seldom is any indication of the

error associated with the calibration provided for the user--indeed,

seldom is the calibration curve supplied with data points so that the

user may assess the scatter of data about his calibration. As a result,

many investigators have been perplexed to find that two instruments yield

different numerical values when used to measure identical points.

The example of a statistical approach can be used to approximate the

error associated with the calibration of instruments. The example further

provides the standard statistical tests, which are used to determine

whether a number of successive calibrations of the same instrument can be

considered to be the same curve or whether they are different. Essen-

tially, these tests involve determining if the lines have a common slope

and a common intercept.

Field calibrations were based on regressions of strain measurements

in 1972 on strain measurements in a previous year. A laboratory calibra-

tion was based on a regression of strain measurements in 1972 on angle.

The procedure shows how to combine field calibrations with the laboratory

calibration, thereby providing statistical inferences about the angle

associated with the strain measured in previous years.
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